Automated Biopsy System Powered by DC Motors

Compact, High-Torque Motors Power Handheld Automated Biopsy System For Decrease Sampling Time, Ease Of Use And Faster Patient Recovery.

Automated handheld biopsy collection device
Automated handheld biopsy collection device

Breast biopsies have come a long way from the open surgical procedures of decades past. With the improved procedures of today, technicians remove the tissue using a several-mm-diameter cannula inserted in the breast. While this is a significant improvement over the previous traditional method, this approach can still require multiple insertions of the cannula for optimal sampling, which increases tissue trauma and recovery time. When medical device manufacturer SenoRx decided to develop an automated, handheld system capable of harvesting multiple samples with a single insertion, they turned to compact FAULHABER® high-torque motors from FAULHABER MICROMO.

In the SenoRx EnCor automated biopsy system, the tip of the cannula is a solid, sharp tip; the sample is harvested through a roughly 0.25cm by 2cm aperture that opens up on the side. A vacuum pulls the tissue into this opening. A cutter within the cannula slides up to sever the tissue, which is then drawn by the vacuum into a tissue chamber in the device. The cannula then rotates to capture tissue at multiple other angular positions (i.e. 0˚, 60˚, 120˚, etc.) without the need to remove and reinsert the cannula.

The EnCor is a two-part device consisting of a disposable probe that integrates the cannula and the tissue chamber, and a driver unit that powers rotation of the cutter, one to rotate the outer cannula of the disposable in sync with it, and one to translate the cutter along the axis of the cannula.

The device is designed as a handheld unit, which means that real estate is at a premium. "Size is the most important thing, so I chose the smallest motors that had the torque we needed to perform the biopsies," says senior staff engineer Martin Shabaz of SenoRx. "FAULHABER MICROMO's motors provide high torque in a small package."

Biopsy device drive unit (pale blue) contains the coreless DC motor from FAULHABER MICROMO
Biopsy device drive unit contains the
Coreless DC Motor from FAULHABER MICROMO

Engineering The System

To build the prototype, the SenoRx team worked with off-the-shelf motors, which allowed them to take advantage of FAULHABER MICROMO's Express Prototyping Program. "They deliver more power and higher torque when you have brushes on them. FAULHABER MICROMO provided the FAULHABER micro DC motors that were exactly what we were looking for."

In addition to the encoder, each motor has a planetary gearhead with a 64:1 reduction ratio. The probe and driver interface via idler gears. "Backlash isn't an issue for this application", Shabaz says. "We require precise movements and fortunately the backlash in these gears is so minimal compared to these gross movements that there isn't any negative effect."

Standard products weren't enough to do the job, though. To meet size specs for the driver, the team worked with FAULHABER MICROMO to develop a custom multi-conductor cable that would fit inside the housing. Not only did it satisfy form factor constraints, it featured spare conductors that allowed Shabaz to ground the encoder case through the cable to aid in meeting the International Electrotechnical Commission (IEC) susceptibility and a custom-designed microcontroller in the control module handles motion commands as well as ancillary tasks like operation of lights, switches, and the vacuum system. "We made it totally programmable," says Shabaz. "We wanted to come up with a control system that we can simply upgrade in the future as our product evolves."

That flexibility allows the user to operate the unit using pre-programmed sampling patterns, like automatically harvesting tissue every 60°; or to operate the device manually during the biopsy procedure.

Biopsies by definition involve contact with tissues and bodily fluids. To protect both technician and electronics, the EnCor was designed as a closed system. The tissue remains in the probe and fluids are removed via vacuum. The driver is splash-resistant and can be cleaned with germicidal wipes. The only elements exposed are the interface gears, which are protected with a plastic dam. As a result, the unit as a whole is contamination resistant.

Solving The Challenges

Tissue chamber module snaps onto the driver unit of the biopsy systemThe EnCor systems are designed to last a minimum of three years. Because of the high duty, cycles involved five or more biopsies per day in some facilities the SenoRx team put the drivers through rigorous life cycle testing to simulate three years of normal use. "We conduct load and burn-in tests on every motor to ensure they perform to our stringent specifications," Shabaz notes.

The team also put the units through shock and vibration testing; this is where an issue was discovered. The units are handheld, and thus subject to being dropped. In shock tests to simulate operating conditions, Shabaz discovered that the interface between the motor and the encoders was being compromised. In some cases, the encoders were merely dislodged so that they generated an error code; in others, they broke right off.

To solve the issue, FAULHABER MICROMO's dedicated machining center strengthened the encoder-motor interface by lengthening the overlap between the two cases and reinforcing the joint with epoxy. Meanwhile, Shabaz increased the length of the frame holding the motors so that it would encompass the encoders, as well. The result is a much more durable unit.

coreless small DC motors from FAULHABER MICROMO power handheld Automated Biopsy SystemAs with all medical devices, the EnCor is subject to stringent safety regulations. On startup, the driver goes through a self-test routine for both motors and encoders. Once the probe is attached to the driver, the system goes through a sequence to calibrate the probe. The process doesn't end when the biopsy starts. Every movement is restricted to a specific window; if the unit attempts motion outside of those windows, the microcontroller will generate an appropriate error message and then shut down.

Shabaz, for one, has been quite satisfied with performance, so much so that he's already planning to integrate a new encoder in his next-generation EnCor device. As to the current design, feedback has been uniformly positive. "[The device] works great," he says. "It's been very well received." So well that about a thousand EnCor systems have been deployed globally. "FAULHABER MICROMO's knowledgeable staff assisted us in our effort to get our products to market as quickly as possible."

   Forward Webpage Link Forward Webpage Link


More informationTo learn more about medical and lab automation applicationsand the micro motors that power them, please contact one of our application engineers, or explore the FAULHABER MICROMO Motion System Selector to view our products and motor configuration options.