My Cart (0)

Advancing the Evolution of Humanoid Robotics

Keeping Up with Expectations

The evolution of humanoid robotics. Humanoid robots are  copied from nature, but still with limited freedom of movement

Robots explore other planets, produce car parts, assist with warehouse inventory, and even vacuuming and have become a growing part of automated processes. They do not, however, usually look like what the science fiction fan might imagine as they move around as a flat trolley on wheels or are permanently installed as bulky machines in industrial halls. Humanoid robots with eyes and ears, arms and legs are still in their early stages of development. A division of Dongbu Robot is working in this field and to add 'muscles' for their mechanical people, the Korean company uses FAULHABER motors from MICROMO.

Industrial robots from Dongbu are used in, among other places, semiconductor production, where they collect the highly sensitive silicon wafers following a production step and precisely position them for the next step. For such tasks, the machines are immovably anchored at the production site. In addition, the company produces robots for use in daily life - robots that clean floors, patrol rooms as automated guards or guide and inform visitors. These travel on wheels and have a box-shaped housing. What both types of robots have in common is their computing capacity and their motor power for completing a small number of narrowly defined tasks. In doing so, they use their resources very efficiently, however, they are not particularly versatile.

Humanoid Handicap

Even in their basic movement, humanoid (human-like) robots are at a decisive disadvantage compared to the specialists of their species. Walking on two legs is far more complex than precisely controlled movement on wheels. Even humans need a good year before this seemingly trivial sequence of movements is mastered and the interplay between some 200 muscles, numerous complicated joints and various specialized regions of the brain materializes. On top of this is the fact that human biomechanics leave much to be desired in terms of energy efficiency. The unfavorable lever ratios of arms and legs require high power effort for relatively modest results.

Until now, humanoid robots have therefore only been used as research objects or as toys - or a combination of both. Technical universities around the world have been holding robot football tournaments since the 1990s, in which research, technical development and fun form a productive unit. There is now a separate league specifically for humanoid robots. There is a massive international community of robot enthusiasts who test their programming skills with self-made robots or robots made from pre-fabricated kits and, in doing so, also advance the knowledge about the possibilities of humanoid robots.

The complex mechanics of human movement are replicated with 20 servo units
The complex mechanics of human movement
are replicated with 20 servo units.

Power and Intelligence Package

The Hovis series from Dongbu Robot has many supporters in this community. This is due not least of all to the so-called servos, which put the approximately 13.8" mechanical men into motion. The servos, which are also sold separately, are very popular among the ambitious hobbyists. A servo is a compact unit which – to continue the comparison to humans – sits as a muscle-tendon-nerve packet in the limbs. It converts battery power and control signals into independent movement. For small humanoid robots, Dongbu Robot developed the servo units of the HerkuleX series. They consist of a drive motor, a high-performance gearhead, an electronic feedback system (encoder) and a communication interface, all of which are accommodated together in a sturdy plastic housing.

The encoder ensures that the servo always exactly knows its current position. It also translates the control signal, for example, for the command "step forwards," and tells the motor how many revolutions are needed in order to perform the task. An optimally coordinated interaction between motor, software and control unit gives the robotic joint a certain degree of autonomy in the sequence of movements. With HerkuleX servo units, the machines are able to precisely control both simple as well as complex mobility patterns independently. Thanks to the sophisticated software in the encoder and its high performance communication interface, the signals are transmitted quickly and exactly.

Play Video Dancing Dongbu Robots

Compact Efficiency

The movement itself comes from the motor. Due to the unfavorable humanoid lever ratios, it must develop as much torque as possible with minimal dimensions. "Following a detailed comparison of the motors that are available on the market, Dongbu Robot selected the DC motors of the 2224 SR and 2232 SR series from FAULHABER," explains D.S. Choi from Dongbu Robot. "The extreme compactness and high power generation of the motors were the decisive factors. In terms of dynamics and power density, they were the undisputed leaders. Furthermore, the name FAULHABER is synonymous with outstanding quality for robotics enthusiasts."

High-performance HerkuleX servo modules based on FAULHABER drive technology
High-performance HerkuleX servo modules
based on FAULHABER drive technology

The DC motors of the 2232 SR series achieve a continuous torque of 10 mNm with a motor diameter of just 22 millimeters. To accomplish this, they need very little power and begin their work even with a very low starting voltage. With an efficiency of up to 87%, they use the battery reserves with maximum efficiency. D.S. Choi: "This is extremely important for a long running time per charge. In addition, the linear characteristics of the motor simplify control for us."

With regard to their utility value, humanoid robots are still far from their stationary industrial colleagues and the rolling domestic servants. With advances in technology, their disadvantage, however, could be transformed into a key advantage. Humans, too, were able to celebrate their evolutionary triumph on account of their comparatively unstable upright gait. From their non-specialization grew virtually limitless possibilities which ultimately made them so successful. In any case, the robo-footballers have set the goal of being able to defeat the reigning human world champions by 2050.

More informationTo learn more about robotics applications and the small DC motors that drive them, please contact one of our application engineers, or explore the MICROMO Motion System Selector to view available products and motor configuration options.


Additional Images

dongu robotics Hovis Litedongu robotics Hovis Lite